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Abstract--The Fry method is a very powerful way to determine the finite strain ellipse in a deformed rock, but the 
problems of reproducibility and objectivity of the measurements still remain. Using image processing, the 
program presented here extracts the central void from Normalized Fry diagrams and computes the characteristics 
of the best fitted ellipse. It runs automatically on Personal Computers, but remains interactive with the operator, 
as does the videographic image analyzer. 

INTRODUCTION 

MANY improvements have been made to the Fry method 
(1979) since its first application, but the problems of 
subjectivity and reproducibility still remain. The Fry 
method for strain determination is a graphical tech- 
nique. To measure finite strain parameters, one must 
manually and graphically fit an ellipse on the rim of 
maximum point density, around the central void pre- 
sented by the plot. This manual measurement of the 
axial ratio and the orientation cannot give reproducible 
results, especially when the central void or the rim of 
maximum density is not well enough defined. 

Erslev & Ge (1990) proposed the Enhanced Normal- 
ized Fry method to compute the finite strain ellipse 
characteristics. Their method consists in the selection of 
points belonging to an initial Normalized Fry plot (Ers- 
iev 1988) and corresponding to certain pairs of neigh- 
bour objects. The selection criterion for these pairs of 
neighbour objects is the value of the "object-pair selec- 
tion factor" (centre-to-centre distance divided by the 
sum of the elliptical radii of each object of the pair) 
which has to be less than a given value, sometimes 
interactively chosen (Erslev & Ge 1990). The selected 
points, using the optimal selection factor, determine the 
rim of maximum density of the initial Normalized Fry 
plot. Co-ordinates of these points are then introduced in 
an algorithm which computes the best fitted ellipse using 
a least-squares method. So, results obtained by this 
method are dependent on the value given to the selec- 
tion factor. 

The program presented here uses the Normalized Fry 
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method (Erslev 1988), introducing a size parameter to 
normalize the centre-to-centre distances. This correc- 
tion eliminates variations due to object size and sorting 
(Erslev 1988) and improves the definition of the central 
void. The aim of the paper is to describe an automatic 
algorithm which allows the objective and reproducible 
determination of finite strain ellipses, using image analy- 
sis. 

DATA ACQUISITION AND PROCESSING 

Data acquisition 

The program runs using digitized files provided by the 
Interactive Videographic Image Analyzer (Lapique et 
al. 1988) at the C.R.P.G. (Nancy, France). The image 
analyzer, using a microcomputer, allows the operator to 
draw superimposed figures on a video image provided by 
a high resolution video camera. Parameters necessary 
for the Normalized Fry method (Erslev 1988) are major 
and minor axes and co-ordinates of the centre of each 
marker. We propose two ways to extract these para- 
meters. The first consists in the digitization of the two 
axes assuming grains to be ellipses. The co-ordinates of 
each centre could then be calculated. The second 
method consists in the digitization of the whole bound- 
ary of the grains. The centre of each marker is calculated 
as the barycentre of all the points of the grain boundary. 
The major axis is calculated as the greater length of 
perpendicular projections of the grain on lines, orien- 
tations of which vary from 0 to 180 ° (greater Feret 
diameter; Lapique 1987). The minor axis is then calcu- 
lated by assuming the boundary to be an ellipse, 
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Fig. 1. Norma l i zed  Fry d iag rams  with s u p e r i m p o s e d  ellipse c o m p u t e d  for  s imula ted  fabrics ( sample  C1) with increas ing 
shea r  coefficients  (7) f rom (a) to (c). A R  is for  axial  rat io.  

measuring its area and then dividing this area by a 
coefficient equal to (:r × major axis). 

Another problem is the number of objects. The Fry 
method needs a greater number of markers than is 
usually obtained by processing of one screen 
(2 × 2.58 mm with a magnification of 25) of a thin 
section under the optical microscope. Since the Normal- 
ized Fry method (Fry 1979, Erslev 1988) takes into 
account the spatial distribution of the markers, we allow 
the facility to move the section, introducing coefficients 
of translation corresponding to displacements parallel to 
X and/or Y of the thin section. This facility greatly 
improves the results obtained using the Fry method on 
the analyzer. 

Data processing 

Using the Normalized Fry method (Erslev 1988), a 
normalized diagram is computed so that the ratio of 
switched on pixels to the grid area (100 × 100 pixels) 
takes a value between 19.5% and 20.5%. This density 
(about 20%) has been experimentally determined to 
approach an image with an optimal definition of the 
central void. This is automatically obtained by enlarge- 
ment or reduction of the whole diagram. 

The resulting image is submitted to a five-order mor- 
phological closing (Serra 1982, Coster & Chermant 
1985). A five-order closing consists in the succession of 
five dilations followed by five erosions. A dilation pro- 
duces a growth of the initial set due to the result of a "hit 
and miss" transformation applied on the whole grid 
(100 × 100 pixels). The dilation is relative to the inter- 
section between the initial set and a structural element 
(here, a square mask of 3 × pixels) which is super- 
imposed pixel-by-pixel on the grid. For each position, if 
one of the 9 pixels in the mask is switched on, the central 
pixel of the mask will be switched on in the resulting set. 

The erosion corresponds to the same scanning of the 
input set but the central pixel of the mask will be 
switched on in the resulting set only if the 9 pixels in the 
superimposed mask are on. This process produces a size 
reduction of the initial set. 

The five-order closing succeeds in switching on all the 
pixels outside the central void of the diagram. Then, 
pixels which remain switched off belong to the central 
void. 

CALCULATION OF THE PARAMETERS OF THE 
FINITE STRAIN ELLIPSE: RESULTS 

Using Principal Component Analysis (PCA) on the 
set of pixels belonging to the central void, the character- 
istics of the finite strain ellipse are calculated. Using the 
reference axes of the digitizer, the covariance matrix is 
calculated. The eigenvector corresponding to the 
greater eigenvalue gives the orientation of the ellipse, 
while the square root of the eigenvalues ratio gives its 
axial ratio. 

The preliminary error on pixel positions is equal to 
%/2 (in grid unit) corresponding to the square grid. 
Then, the program computes the finite strain ellipse 
characteristics for 2 other sets of pixels: (1) initial dilated 
set, (2) initial eroded set (see above, Serra 1982, Coster 
& Chermant 1985). So the program gives an uncertainty 
range for the axial ratio. 

Concerning the orientation, the uncertainty range is 
given by the comparison between the orientation com- 
puted using PCA and the orientation measured from the 
greater Feret diameter (Lapique 1987). These error 
intervals account for the square grid. 

Concerning errors eventually provided by image pro- 
cessing (the five-order closing may make a slight change 
to the shape of the central void), they are accounted for 
in part by the uncertainty range, as their calculations are 
made on both eroded and dilated sets. In other respects, 
this later eventual source of errors is minimized by the 
computation method which takes into account all the 
pixels belonging to the central void and not only its 
boundary. 

EXAMPLES 

The process has been tested on simulated fabrics, 
initially isotropic (Fig. la) which are subsequently de- 
formed with different shear coefficients (Figs. lb & c). 
The isotropic fabric corresponds to 100 circles of radii 
between one and two (in arbitrary unit). They are 
isotropically distributed, they do not overlap each other 
but are nearly touching. This fabric can correspond to an 
ideal sedimentary rock, e.g. showing poorly sorted 
oolites. The two deformed fabrics result from math- 
ematically applying a simple shear matrix to an initial 
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Table 1. Table of results on simulated fabrics, (a) initially isotropic which have been 
subsequently deformed with different shear coefficients, (b) uncertainty ranges 
computed by the program, and (c) relative errors with respect to theoretical values from 
Lapique (1987). Sample C4 shows no result for y = 1 because of the impossibility to 
determine automatically the finite strain ellipse, y is for shear coefficient, AR for axial 

ratio, ¢~ for the orientation, C1-C6 are the names of the simulated populations 

(a) Table of results 

y = 0  y = l  y = 2  
Samples A.R. A.R. ,~ A.R. 

C1 1.03 2.62 -34 5.49 -20  
C2 1.05 2.32 -30 5.23 -22  
C3 1.05 2.31 -31 5.37 -21 
C4 1.06 < > < > 5.43 -21 
C5 1.06 2.6 -29 4.62 -20 
C6 1.07 2.46 -30  5.49 -22 

(b) Table of error intervals computed by the program 

7 = 0  y = l  v = 2  
Samples OnA.R.  (%) OnA.R.  (%) OnCe(°) OnA.R.  (%) On¢~(°) 

C1 0.49 7.06 8 19.13 4 
C2 0.48 3.23 2 10.52 3 
C3 0.48 3.03 6 10.15 4 
C4 1.89 < > < > 3.13 4 
C5 0.47 4.42 2 10.28 7 
C6 1.87 4.07 6 12.11 3 

(c) Table of relative errors compared with theoretical values 

Theoretical 
values 1 2.62 -32 5.83 -22  

7 = 0  y = l  y = 2  
Samples On A.R. (%) On A.R. (%) On ~p (°) On A.R (%) On q~ (°) 

C1 3 0 2 5.83 2 
C2 5 11.45 2 10.29 0 
C3 5 11.83 1 7.89 1 
C4 6 < > < > 6.86 1 
C5 6 0.76 3 20.75 2 
C6 7 6.11 2 5.83 0 
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Fig. 2. Normalized Fry diagrams with superimposed elipses computed for natural samples of deformed ironstone oolites: 
(a) fig. 7.7, and (b) fig. 5.7 of Ramsay & Huber (1983). AR is for axial ratio. 

isotropic fabric, with different shear coefficients. The 
results and the theoretical values are given in Table 1, 
except for sample C4 with 7 = 1. Results are excellent 
for shear strain coefficients up to about 2 (axial ratio 
about 6), but the axial ratios are underestimated for 
increasing deformation. Note  that according to Fry 
(1979), his method is only valid for axial ratios up to 6. 
Relative errors (Table , lc )  computed with respect to 
theoretical values are less than 12% (except for sample 
C5 with 7 = 2), and are reasonable. Concerning the 
orientation, its determination is always very accurate 
with absolute errors (Table lc)  less than 3 ° (in compari- 

son with theoretical values). This error decreases with 
increasing shear coefficients and axial ratios. 

The program has also been tested on natural fabrics in 
ironstone, oolites (figs. 5.7 and 7.7 from Ramsay & 
Huber  1983; see Figs. 2a & b). A comparison with their 
measurements shows nearly identical values. For fig. 5.7 
Ramsay & Huber  determined an axial ratio of 1.7, using 
the Rf/Phi method (Ramsay 1967, Dunnet  1969) while 
the above program computes a value of 1.56. For fig 7.7, 
they calculated a value of 1.79, whereas our program 
computes 1.82. These computed values are as accurate a 
those computed by Erslev & Ge (1990) using the 
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Enhanced Normalized Fry method (1.567 and 1.641, 
respectively). 

The uncertainty ranges computed by the above pro- 
gram (Table lb) are very low except for some samples 
whose central void shape is very complicated, thus 
introducing higher changes on the central void shape by 
dilation and erosion processes. Another problem comes 
from initial Normalized Fry diagrams which present a 
poorly defined central void (e.g. sample C4 with ~, = 1). 
The automatic determination of the ellipse is then im- 
possible. We must then interactively and visually fit an 
ellipse on the Normalized Fry plot, setting the axial 
ratio, the major axis length and its orientation. For 
sample C4, results are 2.58 for the axial ratio and -31  ° 
for the orientation, which compare well with the known 
theoretical value (Table 2c). 

case, the result is as subjective as the manual fitting of an 
ellipse on the Normalized Fry plot. 

In most cases, corresponding to axial ratios between 1 
and 6, the automatic determination is robust. For most 
samples, the parameters are set to default values (20% 
for switched-on pixel density in the Normalized Fry 
diagram and five for the order of closing to extract the 
central void). That means an objective and reproducible 
determination of the finite strain ellipse. 
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ellipse is drawn on the initial diagram. In this 

Coster, M. & Chermant, J. L. 1985. Precis d'analyse d'images. CNRS, 
Paris. C.R.P.G. N ° 967. 

Dunnet, D. 1969. A technique of finite strain analysis using elliptical 
particles. Tectonophysics 7, 117-136. 

Erslev, E. A. 1988. Normalized center-to-center strain analysis of 
packed aggregates. J. Struct. Geol. 2, 201-209. 

Erslev, E. A. & Ge, H. 1990. Least-squares center-to-center and mean 
object ellipse fabric analysis. J. Struct. Geol. 8, 1047-1059. 

Fry, N. 1979. Random point distribution and strain measurement in 
rocks. Tectonophysics 60, 89-105. 

Lapique, F. 1987. Traitement informatique de la drformation finie et 
interprrtation de l'rvolution tectonique Pan-Africaine de la rrgion 
de de Timgaouine (Hoggar, Algrrie). Unpublished thrse de rUni- 
versit6 de Nancy I. 

Lapique,. F., Champenois, M. & Cheilletz, A. 1988. Un analyseur 
vidrographique interactif: description et application. Bull. Mindral. 
111,676--687. 

Ramsay, J. G. 1967. Folding and Fracturing of Rocks. McGraw Hill, 
New York. 

Ramsay, J. G. & Huber, M. I. 1983. The Techniques of Modern 
Structural Geology. Volume 1. Strain Analysis. Academic Press, 
London. 

Serra, J. 1982. Image Analysis and Mathematical Morphology. Aca- 
demic Press, London, 373--423. 


